

**PROCEEDING OF 9TH INTERNATIONAL SCIENTIFIC CONFERENCE,
COLLEGE OF VETERINARY MEDICINE UNIVERSITY OF BASRAH, NOV.
6-7, 2024, IRAQ.**

BASRAH JOURNAL OF VETERINARY RESEARCH, 2025, 24(S1):-68-76.
<https://bjvr.uobasrah.edu.iq/>

Gene Expression Associated with Comparative study between *Lepidium sativum* extract and hormonal treatment of ovarian inactivity in crossbreed cows

Alyasiri E. A., Hayder A.H. Al-Mutar, AL-Hamedawi T. M.

Department of Surgery and Obstetric, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq.

Corresponding Author Email Address: : al_mutar.haydar@covm.uobaghdad.edu.iq
ORCID ID: <https://orcid.org/0000-0002-2066-5953>

DOI: <https://doi.org/10.23975/bjvr.2025.155572.1169>

Received: 3 December 2024 Accepted: 29 June 2025.

Abstract

This research aimed to study the effect of *Lepidium sativum* (LS) seed extract and to compare between it and GnRH in treating inactive ovaries in cows by gene expression, the study was conducted on 27 lactating anestrus crossbreed cows, aged between 3-5 years in Al-Thahab Al-Abiad village / Abu-Ghriab/ Baghdad province during June 2020-July 2021. These animals were suffered from ovarian inactivity after 60-90 days postpartum. These dairy cows were randomly separated in to three equal groups. (9 cows on each). The 1st group treated by injected IM with 0.021mg/animal GnRH (5ml), the 2nd group treated with *Lepidium sativum* 25mg/orally/ for 10days (250mg/animal), the 3rd group left without treatment. Reproductive parameters included animal response, period of response, services number /conceptions, rate of pregnancy and days open. The results revealed that animal response in the 1st, 2nd and 3rd groups was significantly increase for the 1st (GnRH treated group) and 2nd (LS treated group) in compare with the 3rd group (control) , the duration of response in the three groups recording superior significantly ($P<0.01$) for treatment groups (G1 , G2) when compare with the control group (G3) and for G1 compared with G2, Pregnancy rate and days open in the 1st, 2nd and 3rd group was high significant in treatment groups in comparative with control group. We concluded that LS seed extract was effective in treating ovarian inactivity in cows close to GnRH.

Keyword: inactive ovaries, cow, *Lepidium sativum*, GnRH.

Introduction

Inactive ovaries, a reproductive problem in which the ovaries are small, smooth, and related with losses structures in ovary (1). So, the cow lacks signs of estrous and when examined by rectal palpation for diagnosis found small size ovaries with smooth surface and sometime found small follicle present (2). For this reason, the activity of ovary insufficient to produce gonadotropin hormone, this hormone necessary to induced follicle development, also sometime failure of ovary to respond to gonadotropin, and this condition association dairy cow with highly yield occasionally in heifer in first calving (3). In this field multiple hormones used to estrous induction when the cow diagnosis anestrous, the commune hormones used include (GnRH) gonadotropin releasing hormone, (FSH) follicle stimulating hormone, (LH) luteinizing hormone and (E2) estradiol hormone (4 and 5). Some recent studies also encourage the use of progesterone to treatment the inactive ovaries in cow (6; 3). On the other hand, the use of medicinal plants has contributed to the treatment of many conditions related to public health and reproduction in worldwide (7 and 8). The *Lepidium sativum* (LS), usually identified as cress garden, is a yearly concrescence, comestible, the herb fast growing which belongs to Brassicaceae family (9). The LS seeds contained multiple of nutrient component protein, carbohydrate, fat, phosphorous, potassium, magnesium, sulfur, calcium sodium, copper, iron, zinc and manganese, other contained the non-essential amino acid (glutamic acid, aspartic acid, serine, glycine, tyrosine, alanine and proline also contains

essential amino acid (arginine, histidine, threonine, phenyl alanine, methionine, leucine, isoleucine, and lysine) (10). The LS herb extract used to treatment of different human aliment such as man seminal weakness (11), fracture healing (12), liver disorders (13). The herb extract has high inhibitory effect agent different pathogen organisms such as *Escherichia coli*, *Staphylococcus aureus*, *Proteus vulgaris* and *Klebsiella pneumoniae* (14). In female LS seed extract used in different breeding aliment such as inducing abortion (15) , used contraceptive (16) and increasing milk production (17). But to date no study investigates the effects of seed extract to LS herb on ovarian activity. So, this study aimed to compare between effect of seed extract to LS herb and hormonal treatments to inactive ovaries in cows

Materials and methods

Ethical approval: The study has been accepted by the Depart. of Surgery and Therio., College of Vet. Med., Uni. of Baghdad Iraq.

Study period and location: This study was conducted on 27 lactating anestrus crossbreed cows, their age between 3-5 years old in Al-Thahab Al-Abiad village / Abu-Ghriab/ Baghdad province during June 2020-July 2021.

Animals: collected Blood was purified using chloroform phenol (18). Using Roche's 1st Strand cDNA Synthesis Kit for RT-PCR (AMV), 0.5-1.5 μ g of total RNA was used to synthesize single-strand cDNA and a random primer. (19)

PCR gene expression: The cycle RT consists of ten minutes of annealing at 25 degrees Celsius, sixty minutes of cDNA synthesis at 42 degrees Celsius, and five minutes of inactivation at 99 degrees Celsius. I had Electrophoresis done with DNase with a commercial kit (Promega, USA). These animals were suffered from ovarian inactivity after 60-90 days postpartum and diagnosed by rectal palpation and ultrasonography. These cows divided randomly into three equal groups (9 cows on each). The 1st group treated by GnRH (Receptal®- Ceva) injected IM with 0.021 mg/animal (5ml), the 2nd group treated with Lepidium sativum (The seeds were ground by an electric mixer into a fine powder, and then the powder was kept in a clean container in the refrigerator at a temperature of 4°C until used in the experiment , then the seeds powder were mixed with distal water at the time of treatment (suspension) in dose 25 mg/orally/ for 10days (250mg/animal), while the 3rd group considered as control group (without treatment).The reproductive parameters include animal response, the time it takes of response, services number per conception, rate of pregnancy and days open were recorded (4).

Statistical analysis: The statistical analysis includes the mean, the standard error, the Chi-Square, the T test and variance analysis were used according to (18).

Results and discussion

The results are shown in table- 1 explain the number of animal response were 7 (77.7%), 6 (66.6%) and 3 (33.3%) in the 1st, 2nd and 3rd group respectively with a highly significant different in ($P<0.01$) for the 1st (GnRH treated

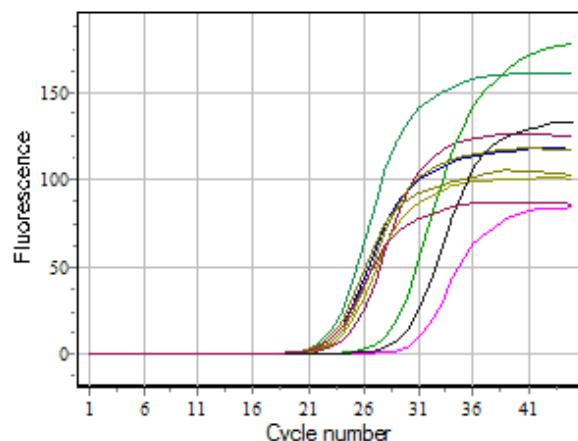
group) and 2nd (LS treated group) in compare with the 3rd group (control), The duration of response recorded 6.36 ± 1.24 , 13.72 ± 2.45 and 87.2 ± 0.1 in the 1st, 2nd and 3rd group respectively, recording a highly significant differences ($P<0.01$) for the treatment groups (G1, G2) when compare with control group (G3) and for G1 compared with G2, the No. of services/conception showed no significant differences ($P<0.01$) in the three groups respectively 1.32 ± 0.7 , 1.25 ± 0.3 and 1.5 ± 0.0 . Pregnancy rate (table 2) was 85.7%, 83.3% and 66.6% in the three groups respectively with a highly significant difference in ($P<0.01$) for the 1st and 2nd group when compare with the 3rd group, and days open recorded 106.35 ± 5.47 , 114.26 ± 6.52 and 187.40 ± 0.0 in the 1st, 2nd and 3rd group respectively which was high significantly in ($P<0.01$) in treatment groups than the control group. **In conclusion:** the use of LS seed extract was effective in treated ovarian inactivity in lactating anestrus crossbreed cows close to GnRH. The clinical roles of UHPLC-QTOF-MS were further investigated. TCGA data showed that expression of UHPLC-QTOF-MS in treatment by Lepidium sativum was significantly higher than control (Fig. 1)

The results of table 1 recorded a highly significant different in ($P<0.01$) in animal response for the 1st (GnRH treated group) and 2nd (LS treated group) in compare with the 3rd group (control) and this agreed with (20), (7) who used a different herbal extract for treatment of inactive ovaries in cows achieving 80% response rate and it agreed with (21) when used LS seed supplement with intake food , observed the herb lead to increase food intake and increase

secretion of gonadotropins hormone in rabbit. When the gonadotropin mediated through LS seeds activated the estrogen to resulting increase of FSH and LH hormone secretion. Also, it agreed with (22, 23 and 24) who recorded 50%; 66.6% and 50% respectively to response to GnRH treatment of ovarian inactivity in cows and buffaloes, the result studies explain the systemic administration of GnRH hormone causes to increase FSH and LH levels in plasma in cows (2, 4), then these hormones stimulated development of follicles in the ovary and induction of estrous signs in female (23, 24 and 5, 6). The duration of response recording a highly significant differences

($P<0.01$) for the treatment groups (G1, G2) when compare with control group (G3) and for G1 compared with G2 and these results agreed with (22), (25) and with (26), (21), the number of services/conception showed no significant differences in the three groups respectively and this agreed with (22, 26). Pregnancy rate (table 2) recording a highly significant difference in ($P<0.01$) for the 1st and 2nd group when compare with the 3rd group, and days open recorded high significantly ($P<0.01$) in treatment groups than the control group, Increased expression of UHPLC-QTOF-MS Metabolite (Fig. 1, 2) these results agree with (27; 28)

Table - 1. Show the groups used in study, the number of cow response, and the time required to response and number of services per conception in lactating anestrus crossbreed cows.


Groups	No. of animals	Type of treatment	Animals' response		Duration of response M \pm SE	No. of services/conception s
			No.	%		
G1: GnRH	9	GnRH (Receptal)® 0.021mg/animal / IM	7	77.7	6.36 \pm 1.29	1.32 \pm 0.7
			a		c	a
G2: Lepidium sativum	9	Lepidium sativum (LS) 5mg/orally/ daily for 10days (250mg/animal)	6	66.6	13.70 \pm 2.45	1.25 \pm 0.3
			a		b	a
G3: control	9	Without treatment (control)	3	33.3	87.2 \pm 0.1	1.5 \pm 0.0
			b		a	a
Total	27	-----	Treated 13/18	72.2		
			Control 3/9	33.3		

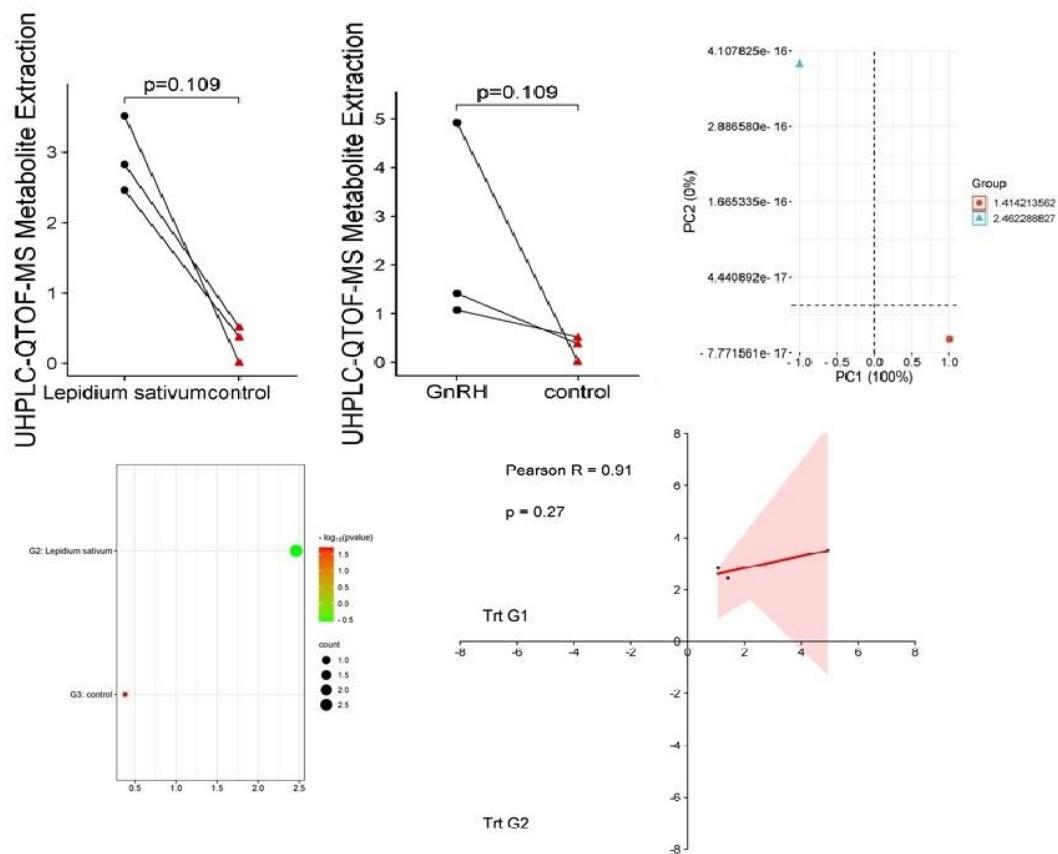

Different small letters mean the significant differences in ($P<0.01$) among groups (vertical).

Table-2. Showed the type of treatment, animals' response, pregnancy rate and days open in lactating anestrus crossbreed cows.

Groups	Type of treatment	No. response	Animals %	Pregnancy rate in cow	Days open M \pm SE
G1: GnRH	GnRH (Receptal)® 0.021mg/animal / IM	7/9	77.7	6/7 a	85.7 106.35 \pm 5.47 b
G2: Lepidium sativum	Lepidium sativum (LS) 5mg/orally/ daily for 10days (250mg/animal)	6/9	66.6	5/6 a	83.3 114.26 \pm 6.52 b
G3: control	Without treatment (control)	3/9	33.3	2/3 b	66.6 187.40 \pm 0.0 a
Total	-----	T: 13/18 C: 3/9		T: 11/13 C: 2/3	84.6 66.6

Different small letters mean the significant differences in (P<0.01) among groups (vertical).

Figure 1: FAM channel fluorescence is determined by the cycle number.

Figure 2: The gene expression of UHPLC-QTOF-MS Metabolite Extraction in cows

Conclusion

The use of LS seed extract was effective in treated ovarian inactivity in lactating anestrus crossbreed cows and it is similar to the effect of hormonal therapy with fewer negative aspects that may occur during hormone treatment.

Acknowledgments

This study supported by College of Veterinary Medicine, University of Baghdad.

Novelty Statement

This study introduces an innovative approach to obtaining Gene Expression Associated with a Comparative study between Lepidium sativum extract and hormonal treatment of ovarian inactivity in crossbreed cows with prolificacy in improving reproductive efficiency among different cow

Conflicts Of Interest

The authors declare that there is no conflict of interest.

Ethical Clearance

This work is approved by The Research Ethical Committee.

References

1- Hassan H A., Adil J A., Shuai H. (2023). Comparative Study of Aflatoxin M1 Biotransformation from Feed to Raw Milk in Cow, Buffalo, Sheep, and Goats in Different Areas of Baghdad Province. *The Iraqi Journal of Veterinary Medicine*. 47(2):88-93.

2- Hafez B, Hafez ESE (2000). Reproduction in farm animals. 7th ed. Lippincott Williams and Wilkins, Awolter Kluwer Co. Philadelphia, U.S.A.

3- Habeeb AT, Alyasiri EA, Al-Hamedawi TM, Ismaeel MA (2020). Comparative study of some hormonal treatment regimens for inactive ovaries in cross- breeds cows. *International Journal of Psychosocial Rehabilitation*. 24 (9): 4839-4846.

4- Bearden HJ, Fuqay JW, Willared ST (2004). Applied Animal Reproduction. 6th ed. Pearson Prentice Hall, N.J., U.S.A.

5- Noakes DE, Parkinson TJ, England GCW (2008). Arthur's veterinary Reproduction and Obstetrics, W. B. Saunders Co. Ltd.

6- Al-Hamedawi TM, Al-Timimi I.H, Al-Yasiri EA (2010). Inactive ovaries in Iraqi cows: clinical and therapeutical study. 10th Scientific Con. of Vet. Med. College: 220-225.

7- Luo R, Gu X (2009). Treating Infertile Milk Cows by Traditional Chinese Medicine. *Journal of Agricultural Science*. 1(1): 82-85.

8- Alyasiri EA, Alwan AF, AL-Hamedawi TM (2015). Comparative study of some intrauterine treatment's regimes on bacterial cause of repeat breeders in Iraqi buffaloes. *Indian Journal of Animal Research*. 4(9):188-90.

9- Vaishnavi GR, Choudhary P (2020). Botanical description of garden cress (*Lepidium sativum* L.) plant and physical characteristics of its seeds. *Journal of Pharmacognosy and Phytochemistry* ; 9(5): 2424-2428.

10- Gokavi S, Malleshi NG, Guo M (2004). Chemical Composition of Garden Cress (*Lepidium sativum*) Seeds and Its Fractions and use of Bran as a Functional Ingredient. *Plant Foods for Human Nutrition* 59(3):105-11.

11- Paranjape AN, Mehta AA (2006). A Study on Clinical Efficacy of *Lepidium sativum* Seeds in Treatment of Bronchial Asthma. *IJPT*. 5:55-59.

12- Juma AH (2007). The effects of *Lepidium sativum* seeds on fracture-induced healing in rabbits. *Med. Gen. Med.* 9:23.

13- Sakran M, SelimY, Zidan N (2014). A New Isoflavonoid from Seeds of *Lepidium sativum* L. and Its Protective Effect on Hepatotoxicity Induced by Paracetamol in Male Rats. *Molecules* ; 19(10): 15440–15451.

14- Adam Sh, Salih. A, Warda S, Abdelgadir WS (2011). In vitro Antimicrobial Assessment of *Lepidium sativum* L. Seeds Extracts. *Asian Journal of Medical Sciences*. 3(6): 261-266.

15- Nath D, Sethi N, Singh RK, Jain A (1992). Commonly used Indian abortifacient plants with special reference to their teratologic effects in rats. *Journal of Ethnopharmacology*, 147-154.

16- Sharief M, Gani ZH (2004). Garden cress (*Lepidium sativum*) seeds as oral contraceptive plant in mice. *Saudi Medical Journal*, 965-966.

17- Kumar S, Baghel R, Khare A (2011). Effect of Chandrasoor (*Lepidium sativum*) Supplementation on Dry Matter Intake, Body Weight and Milk Yield in Lactating Murrah Buffaloes. *Buffalo Bulletin*, 262-266.

18- Steel RG, Torrie JH (1986) Principles and procedures of statistics: A biometrical approach. 2nd Edition, McGraw Hill Co. Inc., New York.

19- Xiang CC, Kozhich OA, Chen M, Inman JM, Phan QN, Chen Y, (2002): Amine-modified random primers to label probes for DNA microarrays. *Nature Biotech*, 20:738-742.

20- Wang H, and Ma Y (2005). The Test of Curing Cows Sterility Disease with the Chinese Herbal Medicine. *Sichuan Animal & Veterinary Sciences*. No.1.

21- Imade OV, Erinfolami WA, Ajadi RA, Abioja MO, Rahman SA (2018). Effects of Lepidium sativum supplementation on growth and gonadotropins secretion in ovariectomized, estrogen-implanted rabbits. *Asian Pacific Journal of Reproduction*; 7(4).

22- Mansoor AR, Taha MM, Ahmed KD, Majeed AF (2011). Treatment of Inactive ovaries in dairy cows. *Al-Anbar J. Vet. Sci.*, 4 (1): 41-44.

23- Khammas DJ, Ali NA (2013). Treatment of Inactive Ovaries in Cows and Buffalos Heifers using a variety of Hormones. *AL-Qadisiya Journal of Vet. Med. Sci.* 12 (1): 60-66.

24- Hussein EK, Mohammed YM (2021). Comparative Study for The Treatment of Inactive Ovary in Local Iraqi Breed Cow by Using Massage Method of The Ovaries and GnRH. *Journal of Applied Veterinary Sciences*, 6 (1): 18 – 20.

25- Al-Hamedawi TM (2012). Clinical & therapeutical study on inactive ovaries in Holstein-Friesian cows by using GnRH analogues. *AL-Qadisiya Journal of Vet. Med. Sci.* 11 (3): 19-23.

26- Westphal JP (2017). Lepidium sativum Effects on Reproduction and Visceral Organ Development in Sprague-Dawley Rats. *Culminating Projects in Biology*. 25.

27- Pan, Y., Gu, H. W., Lv, Y., Yin, X. L., Chen, Y., Long, W., & She, Y. (2022). Untargeted metabolomic analysis of Chinese red wines for geographical origin traceability by UPLC-QTOF-MS coupled with chemometrics. *Food Chemistry*, 394, A133473. <https://doi.org/10.1016/j.foodchem.2022.133473>

28- Yanting Li, Xiaoying Wang, Yuping Sa, Liuyan Li, Weibiao Wang, Lingling Yang, Shuqin Ding, Gidion Wilson, Youyue Yang, Yue Zhang, Xueqin Ma. (2024). A comparative UHPLC-QTOF-MS/MS-based metabolomics approach reveals the metabolite profiling of wolfberry sourced from different geographical origins. *Food Chemistry*: X 21; 101221:1-10.

التعبير الجيني المرتبط بدراسة مقارنة بين مستخلص نبات الرشاد والعلاج الهرموني خمول المبايض في الأبقار الهجينة

ابناس علي الياسري ، حيدر عبدالكريم حسن المطر ، طالب موسى حميداوي
فرع الجراحة والتوليد ، كلية الطب البيطري، جامعة بغداد، بغداد، العراق.

الخلاصة

هدف هذا البحث إلى دراسة تأثير مستخلص بذور نبات الرشاد ومقارنته مع هرمون المحفز للقند في علاج خمول المبايض في الأبقار عن طريق التعبير الجيني، أجريت الدراسة على 27 بقرة هجينة مرضعة تراوحت أعمارها بين 5-3 سنوات في قرية الذهب الأبيض (أبو غريب) خلال الفترة من يونيو 2020 إلى يوليو 2021. عانت هذه الحيوانات من خمول المبايض بعد 60-90 يوماً من الولادة. تم تقسيم هذه الأبقار إلى ثلاثة مجموعات. المجموعة الأولى عولجت عن طريق الحقن العضلي لهرمون المحفز للقند بـ 0.021 ملغم / حيوان ، المجموعة الثانية عولجت بذور الرشاد بـ 25 ملغم / عن طريق الفم / لمدة 10 أيام (250 ملغم / حيوان)، المجموعة الثالثة تركت بدون علاج. وشملت المعايير الإيجابية استجابة الحيوان، وفترات الاستجابة، ومعدل الحمل والأيام المفتوحة. أظهرت النتائج أن استجابة الحيوانات كانت 7 (77.7٪) و 6 (66.6٪) و 3 (33.3٪) في المجموعة الأولى والثانية والثالثة على التوالي مع زيادة معنوية ($P < 0.01$) للمجموعة الأولى والثانية بالمقارنة مع المجموعة الثالثة وسجلت مدة الاستجابة 1.24 ± 6.36 و 2.45 ± 13.72 و 0.1 ± 87.2 في المجموعات الثلاث على التوالي مسجلة تفوقاً معنوياً ($P < 0.01$) لمجموعات العلاج (G1 و G2) عند مقارنتها بمجموعة السيطرة (G3) وبالنسبة لـ G1 مقارنة بـ G2، وكان معدل الحمل 85.7٪ و 83.3٪ و 66.6٪ و سجلت أيام المفتوحة 106.35 و 5.47 و 114.26 و 6.52 و 187.40 في المجموعة الأولى والثانية والثالثة على التوالي والتي كانت ذات دلالة إحصائية عالية ($P < 0.01$) في مجموعات العلاج بالمقارنة مع مجموعة السيطرة. ونستنتج إلى أن مستخلص بذور LS كان فعالاً في علاج خمول المبايض في الأبقار.

الكلمات المفتاحية: خمول المبايض ، البقرة، بذور الرشاد، هرمون المحفز القند.