

Incidence of *Columbicola columbae* lice in Domestic pigeons and Laughing doves in Babylon governorate

Abstract

Ectoparasites, particularly lice, are common pathogens in doves and pigeons, with studies showing significantly high prevalence rates. Scientific evidence indicates that severe lice infestations are associated with abnormal behavioral changes, decreased reproductive performance, and a weakened immune response in infected birds. The field survey was conducted from November 2024 to July 2025, and included the examination of 123 samples representing laughing doves (*Streptopelia senegalensis*) and domestic pigeons (*Columba livia*). Samples were collected from various districts and sub-districts of Babil Governorate using a systematic random sampling methodology to ensure comprehensive geographical representation of birds in the studied area. The results of the current study indicated that the prevalence of *Columbicola columbae* lice in domestic pigeons was 31.81%, while in laughing doves it was 29.82%. The density of the parasite under the wing and tail was 78% and 73% higher than its presence on the back and abdomen, which were 22% and 27% in laughing doves and domestic pigeons, respectively. These findings are of great importance given the harm these parasites cause to infected birds, in addition to their potential source of transmission of diseases common to humans and animals. This species of lice was first recorded in the laughing dove (*S. senegalensis*) in Iraq.

Article Info.

Author

Ameer Ibrahim Abdulzahra¹, Rehal Jehad Husain², Qasim Shakir Kahdim¹.

1-Department of Science, College of Basic Education, University of Babylon, Babylon, Iraq.

2-Directorate of Education Maysan, Ministry of Education, Iraq.

Corresponding Author Email Address:
bsc.st.amer.ebadi@uobabylon.edu.iq

ORCID ID: <https://orcid.org/0000-0002-5241-3865>

Article History

Received: 25 August 2025

Accepted: 9 October 2025

e Published: 31 December 2025

Article type: Research Article

<https://doi.org/10.23975/bjvr.2025.164403.1241>

Keywords: Lice, *Columbicola columbae*, *Streptopelia senegalensis*, *Columba livia*, Babylon.

Introduction

Widespread parasite infestations in wild and domestic birds cause significant losses, and external parasites have been shown to cause more damage than internal parasites (1). The prevalence of ectoparasites is influenced by climatic conditions such as humidity, temperature, and geographical location, as well as the rearing system and host-specific factors (2,3).

There are four suborders within the order Phthirapteran: Ischnocera, Amblycera, Anopluran, and Rhyncophthirina. Lice are generally divided into two groups: chewing lice (Mallophaga) and sucking lice (Anoplura). Lice cause health problems in infected birds due to skin ulcers caused by feeding, which can result in weight loss and bacterial infections. (4, 5). Ectoparasites cause other problems, such as decreased feed intake due to the bird's constant grooming of its feathers, which reduces feeding time, this is because birds spend a lot of time grooming their feathers instead of participating in their various life activities (6).

In research conducted worldwide, approximately 4,000 species of lice-infected birds have been recorded. These lice species fall into the suborders Amblycera and Ischnocera, and these parasites rely on the skin tissue and feathers of their hosts for their nutrition. These species are also known as "chewing lice" due to their unique feeding mechanism. Most chewing lice species tend to have a high degree of host specialization, making them prime examples of coevolutionary patterns between parasites and their hosts (7, 8).

The genus *Columbicola* includes approximately 88 described morphotypes, which parasitize doves and pigeons (Columbiformes). Species in this genus are relatively host-specific, with most being specific to only one host species. The primary mode of transmission of lice between birds is through direct contact, such as between parent birds and their young in the nest. In addition, species in this genus can inadvertently spread the winged parasite of birds, the hippoboscid louse fly. (9,10).

Lice consume the bodily fluids of birds, such as feathers and blood. Lice have chewing mouthparts that feed on scab tissue, dried skin flakes, and sections of a feather. However, the effects of lice parasites extend beyond bloodsucking and skin irritation. They can sometimes be severe, including other infections and stunted growth. (11). *Columbicola columbae* louse is the first species documented as a parasite of pigeons, and it infects a large number of other species and hosts (12). The pigeon louse (*C. columbae*) is a prominent and important example in research on ectoparasites and host-parasite interconnected coevolution (13).

Doves and pigeons can transmit a wide range of parasites and pathogens (bacterial and viral infections) to different flocks, making them a major source of disease transmission and infection. (14, 15). There are many factors that can affect the incidence of parasitic infections in doves and pigeons, including geographic location, availability of food sources, varying climatic conditions, and interactions with other bird species (16).

Columba livia domestica, a ubiquitous domestic pigeon, is associated with humans in many parts of the world. This pigeon often inhabits human homes and causes environmental pollution with its droppings. Parasites can cause significant damage to *C. livia*, causing slow growth, nutrient deficiencies, decreased egg production, weakened immunity, and even death (16, 17). The laughing dove (*Streptopelia senegalensis*) is a resident bird belonging to the pigeon family, and its presence is distributed in almost all regions of the world. It has been given the name "resident dove" due to its constant presence throughout the year in various ecosystems within the region. This bird can be seen in diverse natural environments, as well as in residential neighbourhoods, cities, and villages (18).

Due to the importance of these external parasites that infect birds from an economic and veterinary perspective, we found it necessary to conduct this study aimed at identifying the types of external parasites that infect wood pigeons and Eurasian collared doves.

Material and Methods

A total of 123 birds (66 domestic pigeons *Columba livia*, and 57 laughing doves *Streptopelia senegalensis*) were purchased and captured during the period from November 2024 to July 2025 from different locations in the districts and sub-districts of Babylon Governorate. The diagnosis was based on Allouse (19). The parasite was identified and classified based on descriptions in several researches, including: Issa *et al.* (20); Hassan *et al.* (21); Hamza & Ndams (22); Al-Shabibi & Hatem (23). Ethical approval was obtained from the University of Babylon/College of Basic Education/Department of Science, approval number and date 16 dated 05/01/2025.

Lice collection: Lice were collected from the feathers wing, under the tail, back, and belly using fine forceps. The samples were placed in small containers containing 70% alcohol and a few drops of glycerol until the day of examination. Samples were diagnosed using lenses 10x and 40x and imaged using a 40 mica microscope camera. (22).

Results: Fifty-seven laughing dove samples were examined, and 17 (29.82%) were found to be infected with ectoparasites. Sixty-six domestic pigeon samples were examined, and 21 (31.81%) were found to be infected. Only one ectoparasite species was diagnosed, *Columbicola columbae*, which was found in wing and tail feathers (Figure 1).

Detailed data on the prevalence and locations of parasites are presented in Tables (1,2).

Fig. 1: *Columbicola columbae* louse (10x) on two bird species

Table 1: Infection prevalence rate of *Columbicola columbae* lice in laughing doves and domestic pigeons.

Type of birds	Number examined	Infestation rate
Laughing doves	57	17 (29.82%)
Domestic pigeons	66	21 (31.81%)

Table 2: Locations of *Columbicola columbae* lice in the feathers wing, under the tail, back, and belly.

Type of birds	back, and belly	wing, under the tail
Laughing doves	22%	78%
Domestic pigeons	27%	73%

Discussion

Comparing the results of our current study with other studies in Iraq, the incidence of this type of lice was lower than the rates recorded in studies such as: Alali *et al.* (24) on pigeons endemic to Karbala, at a rate of 81%, and Zangana & Sultan (25) on domestic chickens in Tal Afar district, at a rate of 50.90%, but lower than the findings of (26), who indicated that pigeons in the governorates of Duhok, Erbil, and Sulaymaniyah were infected at rates of 19%, 18.5%, and 10.5%, respectively.

While the infection rate was somewhat similar to the infection rate reported by (27) on domestic pigeons, turkeys and chickens in Babil Governorate, at a rate of 32%, the incidence rate was higher than that recorded by. (28) on migratory birds in Lake Razzaza.

At the same time, when comparing the results with the results of other studies in the world, the percentage was lower than the percentages reported in several studies, including: Rezaei *et al.* (29) on free-range chickens, domestic pigeons, and turkeys in Kermanshah Province, western Iran, with a percentage of 61.7%, and in Zabol, southeastern Iran, by (30) on pigeons with a percentage of 78.40%, and in the Sargodha area, eastern Pakistan, by (31) on pigeons with a percentage of 87.95%, and when studying the large increase in the number of pigeons endemic to the urban areas of Carmen de la Legua, Callao, Peru, by (32), the prevalence of lice reached 96.7%, and in the city center of Diyarbakir, Turkey, (33), found that 48% of pigeons were infected with this type of lice. While (34) found in the urban area of the city of Villavicencio, Mita, reported that 100% of endemic pigeons were infested. In the Sadar Upazila of Dinajpur, Bangladesh, (35) found that the incidence of this lice in farmed pigeons was 78.67%. (36) reported an 86.6% infestation of pigeons in Malakand District, Khyber Pakhtunkhwa Province, Pakistan. (37) reported a 33.33% infestation rate in their study of pigeons in the mountainous areas of Meghalaya.

Several studies have reported lower infection rates than those recorded in the current study, including: (38) on laughing doves in Zaria, Nigeria, with a rate of 9.7%; (22) on laughing doves and pigeons in Zaria, Nigeria, with a rate of 2.82%; and finally, (21) on local chickens in Ismailia Governorate, Egypt, with a rate of 15.88%. Regarding the presence of lice on the back and tail areas of the body mentioned in Table 2, the infection rates were like the rates mentioned in the studies mentioned above. These differences in infection rates in studies and research, whether in Iraq or abroad, are due to the number of birds examined, the season of the year, and the locations where they were collected or hunted, whether in urban or rural areas.

Conclusions

The current study found that Domestic pigeons and laughing doves were infected with *Columbicola columbae* lice, with an infection rate of 31.81% and 29.82% respectively. The study showed that the density of the parasite under the wing and tail increased by 78% and 73% compared to the back and abdomen (22% and 27%) in laughing doves and domestic pigeons. The importance of these results is highlighted by the harm that parasites cause to birds and their potential role in transmitting diseases to humans and animals, and this type of lice was also recorded for the first time in laughing doves in Iraq.

Conflict of Interest

The authors declare that there is no indication of a conflict of interest.

Ethical Approval

The Research Ethics Committee approved this work.

References

- 1- Abdullah, S. H., Mohammed, A. A. (2013). Ecto and Endo Parasites Prevalence in Domestic Chickens in Sulaimani Region. *The Iraqi Journal of Veterinary Medicine.*, 37(2): 149-155. <https://doi.org/10.30539/iraqijvm.v37i2.275>
- 2- Sabuni, Z. A., Mbuthia, P. G., Maingi, N., Nyaga, P. N., Njagi, L. W., Bebora, L. C., & Michieka, J. N. (2011). Prevalence of haemoparasites infection in indigenous chicken in Eastern Province of Kenya. *Livest Res Rural Dev*, 23(11), 1-6. <https://2u.pw/eIfuX4>
- 3- Prelezov, P. N., & Koinarski, V. T. (2006). Species variety and population structure of Mallophaga (Insecta: Phthiraptera) on chickens in the region of Stara Zagora. *Bulg. J. Vet. Med*, 9(3), 193-200. <https://2u.pw/aSG9AB>
- 4- Al-Saeed, A. T., & AL-Badrani, M. A. (2014). Study of the parasites of the local chickens (*Gallus gallus domesticus*) in Duhok province, Kurdistan Region-Iraq. *Science Journal of University of Zakho*, 2(1), 18-23. <https://2u.pw/eRyyLu>
- 5- Ebrahimi, M., Samiei, K., Anousheh, D., & Razi Jalali, M. H. (2016). Identification of ectoparasites in indigenous poultry in southern areas of West Azerbaijan, Iran: A study on the prevalence and importance of these parasites. *Archives of Razi Institute*, 71(4), 253-258. DOI: [20.1001.1.03653439.2016.71.4.5.8](https://doi.org/10.1001.1.03653439.2016.71.4.5.8)
- 6- Clayton, D. H., Lee, P. L., Tompkins, D. M., & Brodie III, E. D. (1999). Reciprocal natural selection on host-parasite phenotypes. *The American Naturalist*, 154(3), 261-270. <https://doi.org/10.1086/303237>
- 7- Price R.D., Hellenthal R.A., Palma R.L., Johnson K.P., Clayton D.H.(2003). The Chewing Lice: World Checklist and Biological Overview .Illinois, USA: *Illinois Natural History Survey Special Publication*, 501. <https://doi.org/10.1080/10635150490468521>
- 8- Clayton, D. H., Al-Tamimi, S., & Johnson, K. P. (2003). The ecological basis of coevolutionary history. *Tangled trees: Phylogeny, cospeciation and coevolution*, 310-341. <https://2u.pw/5ruEB>

9- Bush, S. E., Price, R. D., & Clayton, D. H. (2009). Descriptions of eight new species of feather lice in the genus *Columbicola* (Phthiraptera: Philopteridae), with a comprehensive world checklist. *Journal of Parasitology*, 95(2), 286-294. DOI: [10.1645/GE-1799.1](https://doi.org/10.1645/GE-1799.1)

10- Harbison, C. W., & Clayton, D. H. (2011). Community interactions govern host-switching with implications for host-parasite coevolutionary history. *Proceedings of the National Academy of Sciences*, 108(23), 9525-9529. <https://doi.org/10.1073/pnas.1102129108>

11- Al-badrani, M. A., & Al-Muffti, S. A. (2023). Survey and prevalence of lice infestation the pigeons (*Columba livia domestica*) in Kurdistan Region-Iraq. *Rafidain Journal of Science*, 32(1), 1-8. DOI: [10.33899/rjs.2023.177282](https://doi.org/10.33899/rjs.2023.177282)

12- Adams, R. J., Price, R. D., & Clayton, D. H. (2005). Taxonomic revision of Old World members of the feather louse genus *Columbicola* (Phthiraptera: Ischnocera), including descriptions of eight new species. *Journal of Natural History*, 39(41), 3545-3618. <https://doi.org/10.1080/00222930500393368>

13- Baldwin-Brown, J. G., Villa, S. M., Vickrey, A. I., Johnson, K. P., Bush, S. E., Clayton, D. H., & Shapiro, M. D. (2021). The assembled and annotated genome of the pigeon louse *Columbicola columbae*, a model ectoparasite. *G3 Genes/Genomes/Genetics*, 11(2): 1-10. DOI: [10.1093/g3journal/jkab009](https://doi.org/10.1093/g3journal/jkab009)

14- Opara, M. N., Ogbuewu, I. P., Iwuji, C. T., Njoku, L., Ihesie, E. K., & Etuk, I. F. (2012). Blood characteristics, microbial and gastrointestinal parasites of street pigeons (*Columba livia*) in Owerri Imo State, Nigeria. *Scientific Journal of Animal Science*, 1(1): 14-21. <https://2u.pw/jVLmz>

15- Mansour, S. M., ElBakrey, R. M., Ali, H., Knudsen, D. E., & Eid, A. A. (2014). Natural infection with highly pathogenic avian influenza virus H5N1 in domestic pigeons (*Columba livia*) in Egypt. *Avian Pathology*, 43(4), 319-324. <https://doi.org/10.1080/03079457.2014.926002>

16- Sivajothi, S., & Sudhakara, R. B. (2015). A study on the gastro intestinal parasites of domestic pigeons in YSR Kadapa district in Andhra Pradesh, India. *Journal of Dairy, Veterinary & Animal Research*, 2(6):216-218. DOI: [10.15406/jdvar.2015.02.00057](https://doi.org/10.15406/jdvar.2015.02.00057)

17- Radfar, M. H., Khedri, J., Adinehbeigi, K., Nabavi, R., & Rahmani, K. (2012). Prevalence of parasites and associated risk factors in domestic pigeons (*Columba livia domestica*) and free-

range backyard chickens of Sistan region, east of Iran. *Journal of parasitic diseases*, 36(2): 220-225. <https://doi.org/10.1007/s12639-012-0112-5>

18- Doniyorov, B. N. (2022). Materials on the biology of laughing dove (*Streptopelia senegalensis* Linnaeus, 1766) in bukhara region. *Builders of the Future*, 2(01), 1-11. <https://doi.org/10.37547/builders-v2-i1-1>

19- Allouse B. E. (1961). Birds of Iraq. Galliforms-Piciformes. Voll. II. Al-Rabitta Press: Baghdad.

20- Issa, A. R., Mero, W., Hasan, D. L., & Hameed, M. A. (2021). The Prevalence of Parasites in the Domestic Pigeons (*Columba livia domestica*) in Zakho City, Kurdistan-Iraq. *Baghdad Science Journal*, 18(2): 210-216. <https://doi.org/10.21123/bsj.2021.18.2.0210>

21- Hassan, T. A., El-Gawady, H. M., El-Gayer, A. K., & Sallam, N. H. (2023). Morphological and molecular studies of ecto-and endoparasites infested chicken in Ismailia Province, Egypt. *Journal of Advanced Veterinary Research*, 13(3), 352-359. <https://2u.pw/HjKNlx>

22- Hamza, J., & Ndams, I. S. (2024). Ectoparasites of *Streptopelia senegalensis* Linnaeus, 1766 (laughing dove) and *Columba livia domestica* Gmelin, 1789 (domestic pigeon) in Zaria, Nigeria. *Zoologist (The)*, 25: 22-28. <http://dx.doi.org/10.4314/tzool.v25i1.4>

23- Al-Shabibi, Z. S., & Hatem, A. N. (2025). Morphological and Molecular study of Chewing Lice Infesting Poultry in Basrah Province, Iraq. *Bulletin of the Iraq Natural History Museum*, 18(3), 689-700. <https://doi.org/10.26842/binhm.7.2025.18.3.0689>

24- Alali, F., Alhaitami, I., Jawad, R. A., & Jawad, M. (2020, December). Identification of two new species of chewing lice in pigeon (*Columba livia domestica*) in Kerbala Province, Iraq. *AIP Conference Proceedings*, 2290(1): 020037. <https://doi.org/10.1063/5.0027457>

25- Zangana, P. D. A. J. M., & Sultan, A. M. (2023). Environmental Diagnostic Study on Ectoparasite Infestations in Domestic Chickens in Tal Afar, Nineveh. *AL-Yarmouk Journal*, 21(2), 5-10. <https://2u.pw/6lArrY>

26- Al-Badrani, M. A., & Al-Muffti, S. A. (2023). Survey and prevalence of lice infestation the pigeons (*Columba livia domestica*) in Kurdistan Region-Iraq. *Rafidain Journal of Science*, 32(1), 1-8. DOI: [10.33899/rjs.2023.177282](https://doi.org/10.33899/rjs.2023.177282)

27- Alabdali, M. H., & Alewi, H. H. (2025, April). Parasitic Infestation of the Domestic Chicken, Turkey, and Pigeon in the Babylon Province. *IOP Conference Series: Earth and Environmental Science*, 1487(1): 012164. Doi: [10.1088/1755-1315/1487/1/012164](https://doi.org/10.1088/1755-1315/1487/1/012164)

28- Jassem, M. I., Alali, F. A., Al-Ashbal, H. N., Jawad, M. H., & Alhesnawi, A. S. (2023). Prevalence of chewing lice species on migratory birds in Razzaza lake. *Iraqi Journal of Veterinary Sciences*, 37(2):479-485. DOI: [10.33899/ijvs.2022.134464.2434](https://doi.org/10.33899/ijvs.2022.134464.2434)

29- Rezaei, F., Hashemnia, M., Chalechale, A., Seidi, S., & Gholizadeh, M. (2016). Prevalence of ectoparasites in free-range backyard chickens, domestic pigeons (*Columba livia domestica*) and turkeys of Kermanshah province, west of Iran. *Journal of Parasitic Diseases*, 40(2), 448-453. <https://doi.org/10.1007/s12639-014-0524-5>

30- Jahantigh, M., Esmailzade Dizaji, R., & Teymoori, Y. (2016). Prevalence of external parasites of pigeon in Zabol, southeast of Iran. *Journal of parasitic diseases*, 40(4), 1548-1551. DOI [10.1007/s12639-015-0725-6](https://doi.org/10.1007/s12639-015-0725-6)

31- Ahmed, H., Naz, M., Mustafa, I., Khan, M. R., Asif, S., Afzal, M. S., ... & Simsek, S. (2017). Impact of epidemiological factors on the prevalence, intensity and distribution of ectoparasites in pigeons. *Journal of parasitic diseases*, 41(4), 1074-1081. <https://doi.org/10.1007/s12639-017-0936-0>

32- Castro, J., Naupay, A., Orozco, K., Rodríguez, S., Díaz, Y., Navarro, J., & Purca, N. (2017). Ectoparasites of *Columba livia* Linnaeus, 1758 (Birds: Columbiformes) in the district of Carmen de La Legua, Callao, Peru. *The Biologist (Lima)*, 15(2): 425-435. <https://2u.pw/sJ6pf5>

33- Ekinci, A., Ipek Sayin, D.N. & Icen, H. (2024). Ectoparasites of domestic pigeons (*Columba livia domestica*) in Diyarbakir province in Türkiye. *Advances in Biology & Earth Sciences*, 9(Special Issue), 53-57. <https://doi.org/10.62476/abes9s53>

34- Walteros-Casas, H. A., Hernández-Martínez, M. C., Góngora-Orjuela, A., Parra-Arango, J. L., & Chaparro-Gutiérrez, J. J. (2021). Identification of ecto and endoparasites in domestic pigeons (*Columba livia*) from the urban area of Villavicencio, Meta, Colombia. *Rev MVZ Cordoba*, 26(3): 1-12. <https://doi.org/10.21897/rmvz.2157>

35- Rahman, M. G., Harun-ur-Rashid, S. M., Ali, M. H., & Azam, M. G. (2021). Investigation of different parasites of farmed pigeons at Dinajpur Sadar Upazila. *International Journal of Innovation and Applied Studies*, 32(1), 144-155. <https://2u.pw/ybbt45>

36- Khan, W., Gul, S., Gul, M., & Kamal, M. (2018). Prevalence of parasitic infestation in domestic pigeons at Malakand region, Khyber Pakhtunkhwa, Pakistan. *International Journal of Biosciences*, 12(4), 1-7. <http://dx.doi.org/10.12692/ijb/12.4.1-7>

37- Das, M., Kumar, R., Laha, R., & Bhattacharjee, D. (2022). Prevalence of parasites of pigeons (*Columba livia domestica*) in the hilly region of Meghalaya. *Indian Journal of Hill Farming*, 35(Spcl), 33-37. DOI: [10.56678/iahf-spl2022.5](https://doi.org/10.56678/iahf-spl2022.5)

38- Adang, L. K., Oniye, S. J., Ezealor, A. U., Abdu, P. A., & Ajanusi, J. O. (2008). Ectoparasites of the Laughing Dove *Streptopelia senegalensis* (Linnaeus, 1766) (Aves: Columbidae) in Zaria, Nigeria. *Lundiana: International Journal of Biodiversity*, 9(1), 67-71. <https://doi.org/10.35699/2675-5327.2008.23216>

انتشار قمل *Columbicola columbae* في الحمام المتوطن وفاختة النخيل في محافظة بابل

أمير ابراهيم عبد الزهرة¹، رحال جهاد حسين²، قاسم شاكر كاظم¹

¹قسم العلوم، كلية التربية الأساسية، جامعة بابل، بابل، العراق.

²مديرية تربية ميسان، وزارة التربية، العراق.

الخلاصة

تعد الطفيليات الخارجية، وخاصة القمل، من مسببات الأمراض الشائعة في اليمام والحمام، حيث أظهرت الدراسات معدلات انتشار عالية بشكل ملحوظ. تشير الأدلة العلمية إلى أن الإصابة الشديدة بالقمل ترتبط بتغيرات سلوكية غير طبيعية، وانخفاض الأداء الانجذابي، وضعف الاستجابة المناعية لدى الطيور المصابة. تم إجراء المسح الميداني في الفترة من نوفمبر 2024 إلى يوليو 2025، وشمل فحص 123 عينة تمثل فاختة النخيل (*Streptopelia senegalensis*) والحمام المتوطن (*Columba livia*). تم جمع العينات من مختلف اقضية ونواحي محافظة بابل باستخدام منهجية أخذ العينات العشوائية المنهجية لضمان التمثيل الجغرافي الشامل للطيور في المنطقة المدروسة. وأشارت نتائج الدراسة الحالية إلى أن معدل انتشار قمل *Columbicola columbae* في الحمام المنزلي بلغ 31.81%， بينما بلغ في فاختة النخيل 29.82%. وكانت كثافة الطفيلي تحت الجناح والذيل أعلى بنسبة 78% و73% من وجوده على الظهر والبطن، والتي كانت 22% و27% في فاختة النخيل والحمام المتوطن، على التوالي. ولهذه النتائج أهمية كبيرة نظراً للضرر الذي تسببه هذه الطفيليات للطيور المصابة، بالإضافة إلى كونها مصدراً محتملاً لانتقال الأمراض الشائعة بين الإنسان والحيوان. تم تسجيل هذا النوع من القمل لأول مرة في فاختة النخيل (*S. senegalensis*) في العراق.

الكلمات المفتاحية: القمل، الحمام المتوطن، فاختة النخيل، بابل.